

First Step in Machine Learning: Understanding Machine Learning

Babak Tourani AOUG, June 2018

Agenda

- What is Machine Learning?
- Supervised Learning
 - Linear Regression
 - Logistic Regression
 - Neural Networks
- Unsupervised Learning
 - Clustering
- ML in RDBMS example
- Available Tools
- Resources

Who Am I?

- Oracle Developer/DBA
- Started with Oracle 8i, PSP
- Asst coach of Iran's Basketball team
- Radio/TV presenter & producer, BBC World Service
- Ontologies, Graph, Time-Series DBs
- NOT a Machine Learning expert!

What Is a Hypothesis?

- Simply a mathematical function
- Mapping between inputs and predictions

Example: Predicting house prices based on house size $h(x)= heta_0+ heta_1x_1$

Hypothetical Values:

 $egin{aligned} & heta_0 = 100, heta_1 = 0.1 \ & x_1 = 1400 \; (size \; of \; house \; in \; ft^2) \ \implies \; h(x) = 100 + 0.1 * 1400 = 240 \end{aligned}$

Hypothesis/Model

• Hypothesis is a function:

 $h(x)= heta_0+ heta_1x_1$

- Model is an instance of hypothesis: $heta_0 = 100, heta_1 = 0.1$
- Model is "an artefact created by the training process"
 * Amazon Machine Learning
- Model is portable and can be deployed on a different environment

Shape of the Models

Supervised Learning

Machine Learning Genesis

"Train the Model!"

The "Hello World" Data Sample

• House prices in Portland, Oregon (<50 samples)

 Size of The House (sq ft)
 Price (USD)

 2104
 399900

 1600
 329900

 1416
 232000

* https://github.com/girishkuniyal/Predict-housing-prices-in-Portland

The "Hello World" Data Sample

Which One Is the Best Model?

Best Fit = Lowest [Prediction] Error

Best Fit = Lowest [Prediction] Error

How to Find the "Best Fit?"

$$h(x)= heta_0+ heta_1x_1$$

- Cost Function, a.k.a. Error Function Example: Mean Squared Error $J(\Theta) = rac{1}{2m}\sum_{i=1}^m (h(x)-y)^2$
- Find Thetas which minimizes the cost function; i.e. leads to lowest error.
- Using Gradient Descent

* https://developers.google.com/machine-learning/crash-course/fitter/graph

Gradient Descent Algorithm

- Minimizes functions
- Iterative process
- It "adapts" as it gets closer To local minimum
- Size of the steps depends on "Learning Rate"

How it works:

- Multiple passes through data
- Calculates cost
- Calculates new Theta based on cost
- Convergence => Stops!

Training/Learning Process

Performance

- Not about speed
- Not about resource consumption
- Nothing to do with scalability of process
- It's about the model's ability to do correct predictions.
 i.e. High performance models can provide better predictions.

Parameters vs. Hyperparameters

	Parameters	Hyperparameters		
Valuation	Algorithm $(heta_0, \; heta_1, \; heta_2,)$	Human (polynomial degree)		
Optimization Method	Cost Function	Chosen According to Their Accuracy		

Bias vs. Variance

* Image: Machine Learning, Stanford University via Coursera, Andrew Ng

Regression vs. Classification

Regression:

- Continuous values (numbers)
 - e.g. House price
 - Poverty rate among teenage parents

Classification:

- Discrete values (classes)
 - E.g. Emails: spam or not spam Tumour x-rays: malignant or benign Picture identification: cat or dog

Regression vs. Classification

Sigmoid Function

A.k.a. Logistic Function

Output i.e. g(z): Estimated probability that y = 1 $g(z) = rac{1}{1+e^{-z}}$

e.g. lf g(z) = 0.85 => P(y=1 | z) = 85%

Logistic [AND] Regression?!

How to present "features" in the input to the function?

Binary Classification

e.g. Decision Boundary: 67%

Age	Married	Incoming	Outgoing	Loans	Sigmoid	Eligible
25	Ο	2500	1400	Ο	80%	1
46	1	4300	2200	1	73%	1
37	1	3700	2900	1	30%	0
19	Ο	3400	1200	1	47%	О

Complicated Polynomials

 Modelling small number of features using polynomials is possible, but requires new features

 $egin{aligned} & heta_0 + heta_1 x_1 + heta_2 x_2 + heta_3 x_1^2 \ &+ heta_4 x_2^2 + heta_5 x_1 x_2 + heta_6 x_1^2 x_2 \ &+ heta_7 x_1 x_2^2 + heta_8 x_1^3 x_2^2 + ... \end{aligned}$

• => introduce hundreds of features which is computationally expensive and not easy to choose

What We Need Is...

An algorithm that can:

- mix and match features
- assess the impact of each combination $heta_0+ heta_1x_1+ heta_2x_2+ heta_3x_1^2$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \to \begin{bmatrix} & \end{bmatrix} \to h_{\Theta}(x)$$

$$egin{aligned} & egin{aligned} & eta_0 + eta_1 x_1 + eta_2 x_2 + eta_3 x_1 \ & + heta_4 x_2^2 + heta_5 x_1 x_2 + heta_6 x_1^2 x_2 \ & + heta_7 x_1 x_2^2 + heta_8 x_1^3 x_2^2 + \ldots \end{aligned}$$

Neural Network

Neural Network - Network of Neurons

Neural Network

Deep Neural Network

Overfitting Is Good?!

- Research affiliated with Google
- Premise: Indexes resemble models
- Aim: replacing data structures with overfitting models
- Why overfitting?
 - Precision
 - No prediction is involved

* https://arxiv.org/abs/1712.01208

Learned Index Structures

- Tested against an in-memory DB
- Only covers index access, not index maintenance
- B-Tree (Range searches), Hash (Point Index), Bloom Filters (Existence)
- First attempt: Failure

Replacing an index with one complicated Neural Network

- Two order of magnitude slower than B-Tree index
- Model implemented by TensorFlow => high latency
- Index caching has no equivalent in ML solution

Recursive Regression Model

- Premise: It's easier to reduce the error in steps rather than in one go
- Doesn't have to be a tree or balanced
- Simple NN models in 1st stage
- Linear models in 2nd stage
- Faster training and inference on top levels
- Top level models can choose a variety of models in the lower level

Learned Index Structures

- Access speed: 3X faster
- Size: up to 10X smaller
- Currently in development for a Google KV store
- Prospects:
 - Query Optimizer
 - Storage Design
 - Sort/Join Algorithms

		Map Data			
Type	Config	Size (MB)	Lockup (ns)	Model (ns)	
Btree	page size: 32	52.45 (4.00x)	274 (0.97x)	198 (72.3%)	5
	page size: 64	26.23 (2.00x)	277 (0.96x)	172 (62.0%)	2
	page size: 128	13.11 (1.00x)	265 (1.00x)	134 (50.8%)	12
	page size: 256	6.56 (0.50x)	267 (0.99x)	114 (42.7%)	- (
	page size: 512	3.28 (0.25x)	286 (0.93x)	101 (35.3%)	
Learned	2nd stage models: 10k	0.15 (0.01x)	98 (2.70x)	31 (31.6%)	
Index	2nd stage models: 50k	0.76 (0.06x)	85 (3.11x)	39 (45.9%)	- (
	2nd stage models: 100k	1.53 (0.12x)	82 (3.21x)	41 (50.2%)	
	2nd stage models: 200k	3.05 (0.23x)	86 (3.08x)	50 (58.1%)	1

Machine Learning Categories

- Supervised Learning
 - Similar data exists
 - We know what that data represents
 - Find patterns in the existing data to help with predictions
- Unsupervised Learning
 - "Computer! Find out how 'these things' are related!"
- Reinforcement Learning
 - "Computer! Analyze data, make decision and take action!"

Clustering - K-means

ML Algorithms

Algo	Regression	Classification	Handles Complexity	Training Speed	Precision	Amount of Data	Can be Explained?
Linear Regression	√			high	low	low	yes
Logistic Regression		V		fast	low	low	yes
Support Vector Machines	√	V	√			low	no
Decision Trees	1	V	1	moderate	high	high	not if Random Forest
Neural Networks		√	√	low	Very high	Very high	no
Naive Bayes		~		high		low	maybe

Resources for Learning

Tools - Python Libraries

- Matrices and N-dimensional arrays
- Linear Algebra
- Matrix operations

- DataFrames
- Slice, merge, reshape, Join, pivot, aggregate
- I/O operations Files and databases

Tools - Python Libraries

- Algorithms: Classification, Regression, Clustering
- Preprocessing: Normalisation, Standardisation, ...
- Hyperparameter tuning, Model evaluation, ...

- Computation Framework
- Data flow graph processor
- Developed by Google
- Can run on nVidia GPUs and TPUs
- Convolutional/Recurrent Neural Network
- Classification, Regression

Resources for Learning

- Machine Learning by Andrew Ng (Stanford University Coursera)
- OCD Level Machine Learning Guide podcast series
 <u>http://ocdevel.com/podcasts/machine-learning</u>
- Machine Learning Crash Course (Google)
 <u>https://developers.google.com/machine-learning/crash-course/</u>
- Kaggle
 <u>https://www.kaggle.com/learn/overview</u>
- Understanding Machine Learning with Python (Pluralsight)

Resources for Learning

- How to choose Algos for Azure ML <u>https://docs.microsoft.com/en-us/azure/machine-learning/studio/</u> <u>algorithm-choice</u>
- Choosing the right estimator <u>http://scikit-learn.org/stable/tutorial/machine_learning_map/</u>
- Which Algo for which problem <u>https://recast.ai/blog/machine-learning-algorithms/2/</u>

Neural Network - Clear Examples

A Neural Network in 11 lines of Python (Part 1)

A bare bones neural network implementation to describe the inner workings of backpropagation.

Fosted by lancrush on Fuly 12, 2015

• <u>http://iamtrask.github.io/2015/07/12/basic-python-network/</u>

-lone

A Step by Step Backpropagation Example

Matt Mazur

Background

• <u>https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/</u>

Thank You!

@2ndhalf_oracle https://www.linkedin.com/in/babak-tourani/