DOAG Community Event

OMV Capital Project Risk Management

Vienna, 21 May 2014

August Baldassari

Agenda

Objectives

- Which are OMV's project characteristics?
- ► Why was quantitative schedule risk assessment (SRA) introduced?
- ► What are the main preconditions/ requirements for performing the SRA?
- ► Are there are any benefits by taking the effort of an SRA does it pay off?

Contents

Introduction

3

- OMV project portfolio
- Project Risk Management

7

- PM maturation process
- PM methodologies

Quantitative SRA

14

- Motivation why?
- Main steps (incl. preconditions)
- Applications

Conclusions

22

OMV – an integrated oil & gas company

Upstream

Downstream

Exploration and Production

- Worldwide activities, mature core countries:
 Romania and Austria
- Approximately 80% of production in EU and OECD countries
- Production: 288 kboe/d
- Reserves:
 1.13 bn boe 1P
 1.92 bn boe 2P
- Project pipeline: >1 bn boe

Gas and Power

- Gas sales business in CEE, SEE and Turkey
- Gas-fired power plants in Romania and Turkey

Refining and Marketing

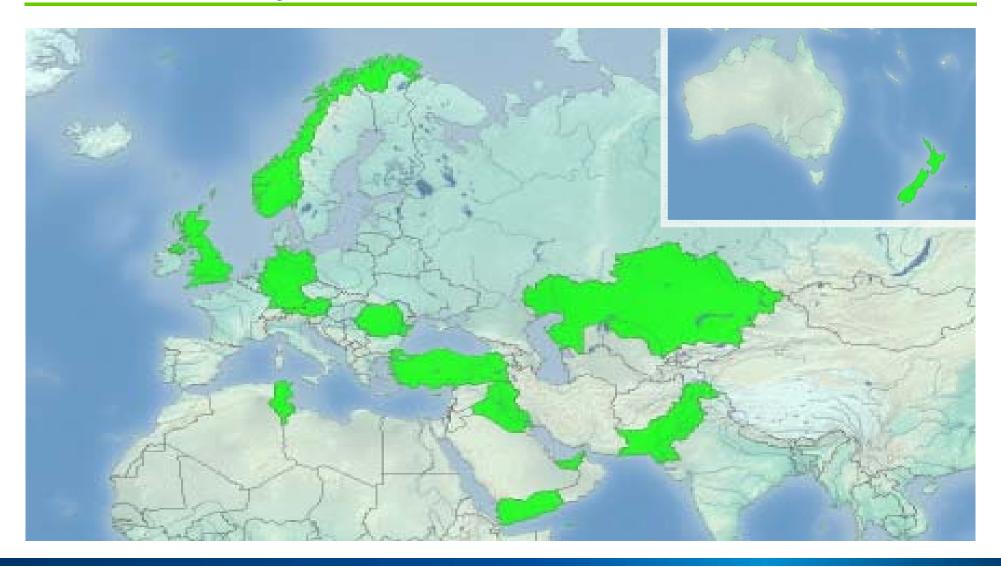
- 3 refineries with capacity of 17.4 mn t⁻¹
- ~4,200 filling stations in 11 countries

Figures from 2013

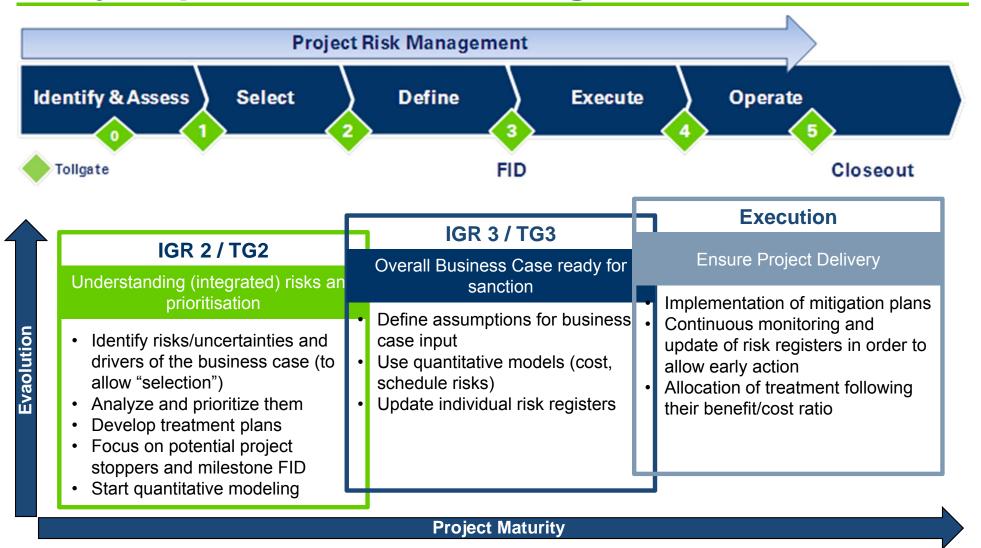
OMV -project portfolio (20mio - >10bn €)

Exploration & Production

Gas & Power


Refining & Marketing

From Norway to New Zealand



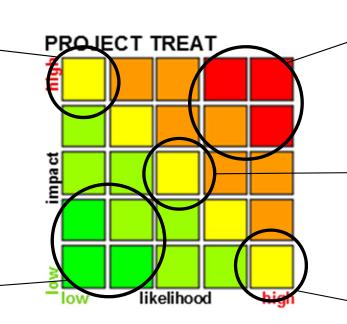
Project Risk Management



Project phases & risk management maturation

Risk management process (ref. ISO 31000)

^{*}Including Project Close-Out & Lessons Learned



Semi-quantitative risk assessment

- Differentiate between risks (threats, opportunities) and uncertainties; definition of risk dimensions (cost, schedule, reservoir, production, legal, political, etc.) and thresholds
- Description and evaluation (quantification: likelihood of occurrence and impact) of risks; produce heat map for risk management; mitigation planning

Significant: Readiness Corner

Risk-reducing actions should be considered. Actions typically consist of establishing and exercising emergency-plans / business continuity plan

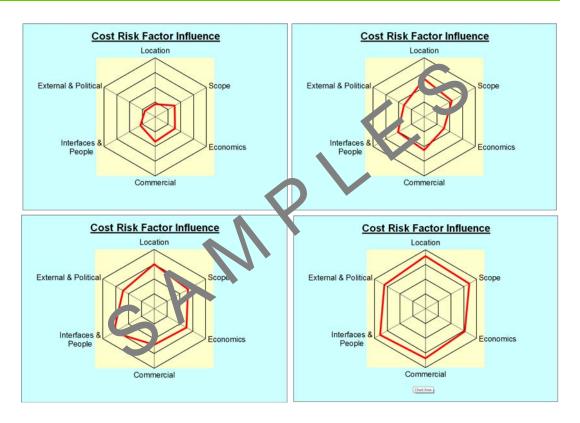
Critical

Risk-reducing actions shall be implemented. These risks normally require immediate attention.

Significant

Risk-reducing actions should be considered. Risks should, as a minimum, be monitored.

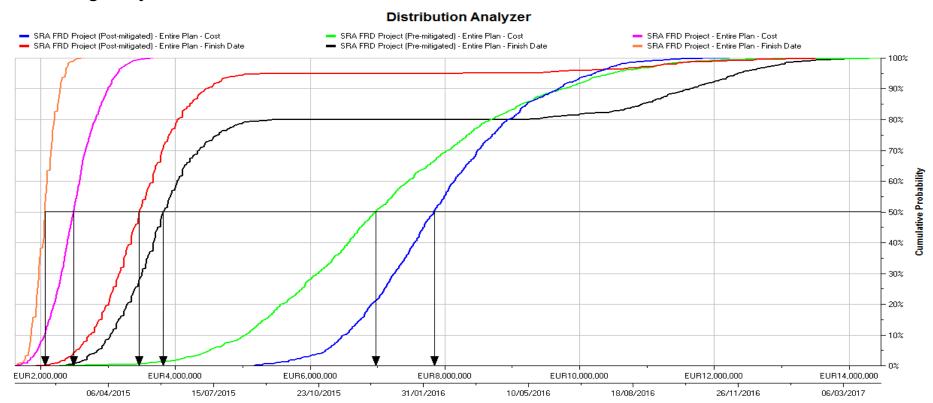
Negligible


Risk-reducing actions are not necessary and should no be implemented unless cost-efficient.

Significant: Cost/benefit Corner Risk-reducing actions are considered based on cost/benefit.

Deterministic/systemic risk analysis

- Standardized tool for systemic risk assessment (provided by external consultant) – quick application with 6 risk dimensions, detailed description of risk criteria
- Basis for quantitative cost risk assessment (5A, 5, 4 class cost estimates)
- Risk profiles can be used as selection criteria during Select phase

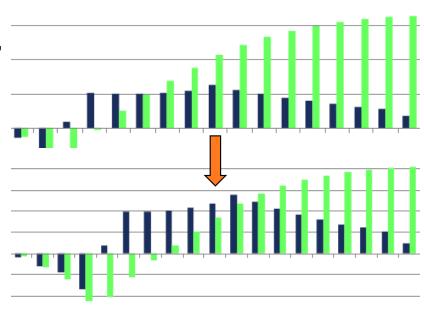


 Verification of probabilistic/stochastic schedule and cost risk assessments (profile, quantitative results)

Probabilistic schedule and cost risk analysis

- Probabilistic/stochastic SRA and CRA used to calculate time and cost contingency
- Ranking of the time/cost risks (schedule/cost sensitivity index)
- Regular updates of SRA and CRA provide early warning indication

Quantitative Schedule Risk Assessment



Why was probabilistic SRA introduced?

- Projects were not delivered on time
 - OMV (owner/operator) relied on contractors' promises (not sufficient time contingency)
 - Execution duration has a significant effect on the business case of projects
 - Production targets were not met
- Forecasts were not reliable
 - No early anticipation of potential delays

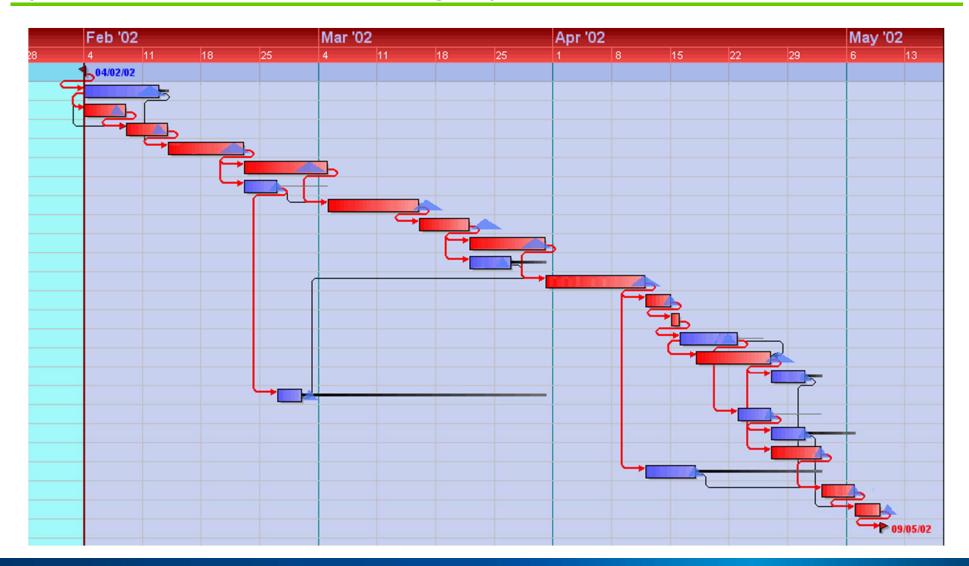
- Methodology for
 - proper contingency setting (accounted for in the business case)
 - early warning indication for potential delays

Preconditions for a probabilistic SRA

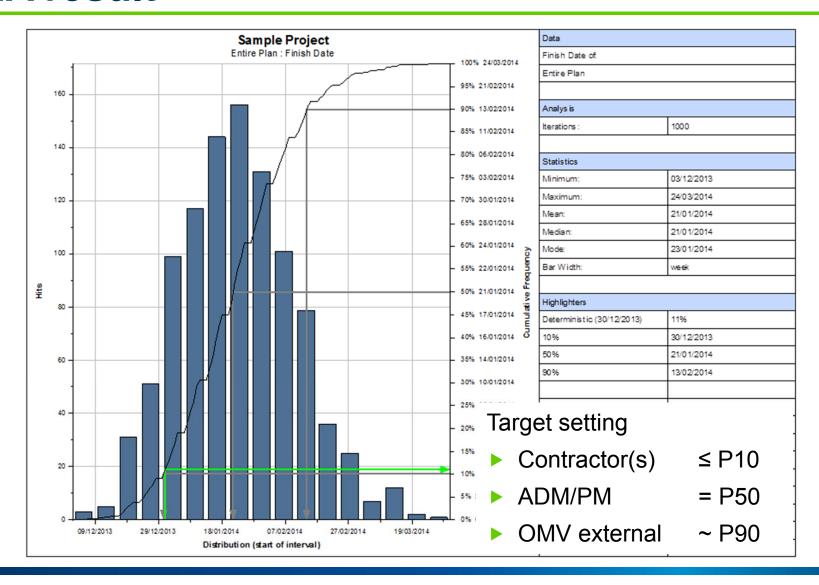
- Corporate risk culture
 - Qualitative/semi-quantitative risk management exists (time, resources) (basis for modeling of schedule risks)
 - Schedule contingency management is understood
 - Benchmarking (e.g., IPA, Functional Forum)
- Project schedule (owner schedule)
 - Critical path schedule (200 800 activities)
 - ► The schedules need to have an adequate network quality (fully linked, etc.)
- Active project control early warning indication highlights delay risks
 - to identify the ultimate causes for potential delays
 - to develop and evaluate recovery/acceleration measures
 - to implement necessary measures as early as possible

What answers does the SRA give?

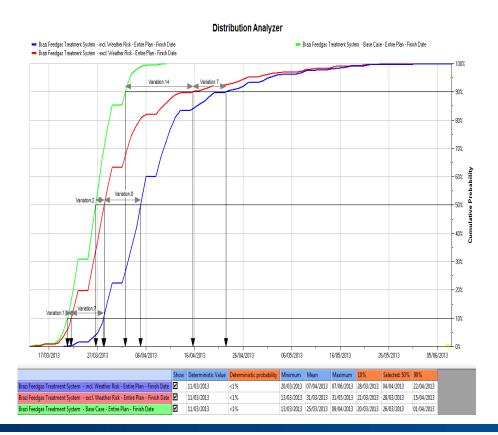
- What is the chance of completing the project on the finish date of the deterministic schedule?
- What chance do we have to finish the project on a specific date?
- What date can the project team be 10%, 50% and 90% confident of finishing by?
- What tasks (risks, uncertainties) are most likely to cause project delay?

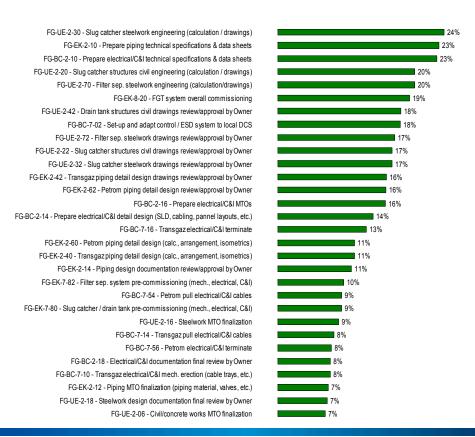

SRA – modeling (Primavera P6)

ctivity ID	Activity Name	Start	Finish	Remaining Duration	Free Float		Calendar	Minimum Duration	Likely Duration	Maximum Duration	Task Duration Function Existence	Probabilistic Branching	Duration Correlation
1 Major Pro	25-Oct-11 A	26-Feb-18	1594d	Od			360	1440	2880	105.00			
MS-I&A0-02	Internal re-commencement kick-off		25-Oct-11 A	0d		100%	7d/w						
MS-SEL0-10	OE go decision for re-tendering (by SC)		22-Aug-12 A	0d		100%	7d/w						
MS-SEL0-90	IGR 2 (project charter for DEFINE signed)		17-Oct-13	Od	30d	0%	7d/w						
MS-SEL0-90R	IGR 2 delayed (due to internal decisions, business case)	17-Oct-13	17-Oct-13	0d	0d	0%	7d/w	120	360	720	50.00		
MS-PER0-10	Infrastructure permits (NGPL, EOHL, CWPL) received		07-Jan-14	Od	300d	0%	7d/w						
MS-PER0-20	CCPP permit for changed design received		17-May-14	0d	170d	0%	7d/w						
MS-DEF0-50	CCPP PreID (pre-engineering, reservation fee agreement for LLIs)		18-Dec-14	Od	41d	0%	7d/w						
MS-DEF0-50R	CCPP PreID delayed (due to internal decisions)	18-Dec-14	18-Dec-14	0d	0d	0%	7d/w	120	360	720	10.00		
MS-DEF0-90	IGR 3 = CCPP FID (project charter for EXECUTE signed)		11-Sep-15	0d	0d	0%	7d/w						
MS-DEF0-90R1	IGR 3 = CCPP FID delayed (due to internal decisions)	11-Sep-15	11-Sep-15	0d	0d	0%	7d/w	120	360	720	5.00		
MS-DEF0-90R2	IGR 3 = CCPP FID delayed as permit Simbach - St. Peter/Isar pending	11-Sep-15	11-Sep-15	0d	0d	0%	7d/w	0	360	720	40.00		
MS-EXE0-85	CCPP COD		26-Feb-18	0d	0d	0%	7d/w						
2 Project Assurance		02-Sep-13	10-Sep-15	506d	Od			81	132	176	0.00		
PA-SEL0-14	IGR 2 peer review process	02-Sep-13	16-Oct-13	33d	0d	0%	5d//w 2w	15	33	44			
PA-SEL0-24	IGR 3' review process for PreID	03-Nov-14	17-Dec-14	33d	0d	0%	5d//w 2w	22	33	44			
PA-DEF0-14	IGR 3 peer review process (incl. all relevant decisions)	11-Jun-15	10-Sep-15	66d	0d	0%	5d//w 2w	44	66	88			
3 Project M	3 Project Management			0d	0d			0	0	0	0.00		
4 Power Economics - Business Case		03-Sep-12 A	10-May-13	130d	Od			90	125	155	0.00		
PE-BC-0-32	CCPP investigate gas storage supply options	03-Sep-12 A	29-Mar-13	100d	0d	5%	5d//w 2w	80	100	120			
PE-BC-0-22	CCPP evaluation of various plant type options for OE re-tendering	08-Oct-12 A	16-Nov-12	15d	0d	65%	5d//w 2w	5	15	20			
PE-BC-0-24	CCPP verification of plant type (H-type CCPP)	19-Nov-12	30-Nov-12	10d	4d	0%	5d//w 2w	5	10	15			
PE-BC-0-42	CCPP decide on techno-economical solution for supply from storage(s)	01-Apr-13	10-May-13	30d	0d	0%	5d//w 2w						
5 OE Services		12-Sep-12 A		195d	Od			107	155	238	0.00		
OE-CON3-10	OE services prepare tender documents (part 1)		05-Oct-12 A	0d			5d//w 2w						
OE-CON3-20	OE services prepare tender documents (part 2)	19-Nov-12	06-Dec-12	14d	0d		5d//w 2w	5	14	19			
OE-CON3-30	OE services bid preparation by contractors	07-Dec-12	31-Jan-13	30d	Od		5d//w 2w	25	30	35			
OE-CON3-40	OE services evaluation of bids & bid negotiations	01-Feb-13	19-Apr-13	56d	0d		5d//w 2w	40	56	110			
OE-CON3-70	OE services evaluation contract awarded & effective		19-Apr-13	0d	0d		5d//w 2w						
OE-SER2-10	OE mobilization period	22-Apr-13	21-May-13	22d	0d	0%	5d//w 2w	15	22	30			
OE-SER2-20	OE prepare deliverables for IGR 2 (I&A, SELECT)	17-Jul-13	30-Aug-13	33d	0d	0%	5d//w 2w	22	33	44			


SRA - Monte Carlo simulation

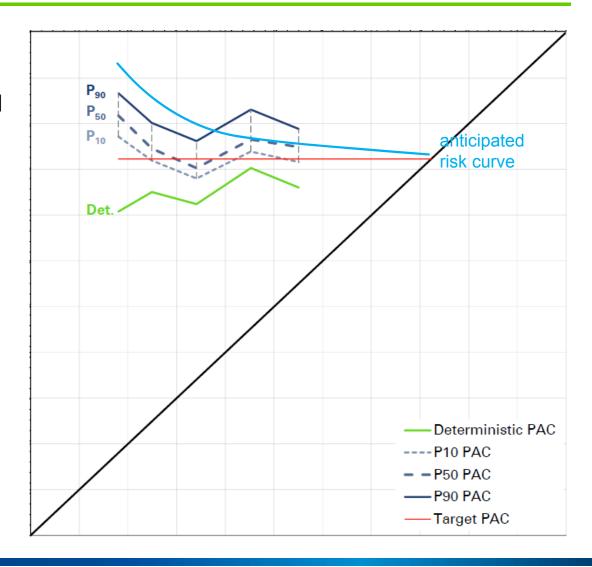
(Primavera Risk Manager)


SRA result



Distribution analyzer and schedule sensitivity index (SSI)

- Uncertainties only
- Pre-mitigated risk scenario
- Post-mitigated risk scenario


 SSI: measure for the likelihood of an activity delaying the project finish date (or any other date)

Regular Performance of the SRA

- Depending on the project driver (cost-driven, schedule-driven) the SRA to be regularly repeated (monthly, quarterly)
- Risk data can be updated together with the deterministic schedule – SRA is a regular schedule review
- Introduce dates into a milestone trend analysis chart
- Early warning rules to be set-up
 mitigation measures to be defined and implemented

Summary

- Challenges when introducing the SRA
 - Education project owners, ADMs, PMs and project teams
 - Allocating time and resources for risk workshops
 - Reaching the required schedule quality (network, sequences, resource-loading)
 - Maintaining a standard quality level in the project where SRA is introduced
- The introduction and application of the SRA resulted in
 - Greater risk management awareness of project teams
 - Project specific calculation of time contingencies (P50 defined in standard)
 - Greater transparency and understanding of causes and effects
 - Schedule-driven projects are provided with a early warning indication
 - Higher success rate in achieving the targeted completion dates (projects with SRA)

Legal Disclaimer

This presentation is prepared in order to outline our expression of interest. Nothing in this presentation shall be construed to create any legally binding obligations on any of the parties. Neither party shall be obligated to execute any agreement or otherwise enter into, complete or affect any transaction in relation to this presentation.

All figures and information in this presentation are strictly confidential, they are by no means binding and thus indicative only.

© 2014 OMV Aktiengesellschaft, all rights reserved, no reproduction without our explicit consent.

Contact

OMV Aktiengesellschaft Capital Project Management

Trabrennstraße 6-8 august.baldassari@omv.com

1020 Vienna +43 1 40440-23338 / +43 664 6122512

www.omv.com

